

Hg²⁺-induced leakage of electrolytes and inhibition of NO₃⁻ utilization in *Nostoc calcicola*

Role of interacting cations

Chandra Bhushan Singh and S. P. Singh

Algal Research Laboratory, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India

Received July 19, 1990

Summary. The effect of mercury (Hg²⁺) in the absence and presence of methylmercury (CH₃Hg⁺), cadmium (Cd²⁺), copper (Cu²⁺), nickel (Ni²⁺) and calcium (Ca²⁺) on Nostoc calcicola Bréb. has been studied in terms of electrolyte leakage, NO₃ uptake and in vivo nitrate reductase (NR) activity to discover any possible correlation among such parameters under Hg²⁺ stress. Leakage of electrolytes from Hg2+-treated cyanobacterial cells was directly proportional to Hg²⁺ concentrations and exposure time. In comparison to NO₃ uptake, an about 60-fold slower rate of NR activity was observed in the untreated cultures, the former being five times more Hg²⁺-sensitive. A non-competitive synergistic interaction of Hg²⁺ with CH₃Hg⁺ or Cd²⁺ and antagonistic with that of Ni²⁺ or Ca²⁺ has been observed for both the processes of NO₃ utilization. The antagonistic interaction of Cu²⁺ with Hg²⁺ in terms of NO₃ uptake and synergistic with respect to NR activity, has been attributed to the dual bonding preference of Cu²⁺ for cellular ligands. These findings suggest that (a) a statistically significant correlation exists among such parameters; (b) Hg²⁺ predominantly attacks the cyanobacterial cell membrane; (c) Hg²⁺ inhibits NO₃ utilization; (d) the presence of other cations increases or decreases the inhibitory actions of Hg^{2+} .

Key words: Hg²⁺ toxicity - *Nostoc calcicola* - Electrolyte leakage - NO₃⁻ uptake - Nitrate reductase - Metal interactions

Introduction

The extremely toxic metal cation of mercury (Hg²⁺) has no known biological requirement. In natural habi-

tats, the heavy metal may originate from domestic sewage, agricultural run-off and industrial or pharmaceutical wastes and ultimately enters biological systems as the active cation to interact with intracellular targets (Blinn et al. 1977; Sigmon et al. 1977; Jeffries 1982).

Hg²⁺ increases cell membrane permeability and induces the leakage of intracellular ions in eukaryotic algae (Shieh and Barber 1973; Rai et al. 1981); however. there are no similar reports on prokaryotic cyanobacteria. The transmembrane uptake of nitrate (NO₃⁻) is largely an energy-dependent process and has been reported to be quite sensitive to Cd2+ in Anacystis nidulans (Singh and Yadava 1983) and to Cr2+ or Sn2+ in Anabaena doliolum (Rai and Dubey 1989). Nitrate reductase (NR), the key enzyme for NO₃ reduction, operates at the expense of electrons derived through photosynthesis (Guerrero and Lara 1987), a process which is extremely sensitive to Hg^{2+} (Stratton et al. 1979; Singh and Singh 1987; Singh et al. 1989). Recently, in vivo NR activity was found to be quite sensitive to Cr²⁺ and Sn²⁺ (Rai and Dubey 1989). However, the reports so far available provide no information on the biology of Hg²⁺ toxicity to cyanobacteria in terms of electrolyte leakage, concurrently with NO₃ uptake and in vivo NR activity.

Apart from various biotic factors, Hg²⁺ toxicity is greatly influenced by the presence of other interacting cations (Stratton and Corke 1979; Singh and Singh 1987; Singh et al. 1987). Since the natural habitats are generally characterized by the co-existence of a large number of toxic and non-toxic cations (Whitton 1970; Henriksen and Wright 1978; Strarodub et al. 1987) and since algal growth media also contain a large number of cations, it is necessary to study Hg²⁺ toxicity in the presence of other interacting cations.

The present study, therefore, was aimed at investigating such aspects in order to discover a possible correlation in electrolyte leakage, NO₃⁻ uptake and in vivo NR activity in the diazotrophic cyanobacterium *Nostoc calcicola* Bréb. exposed to either Hg²⁺ alone or to its combinations with CH₃Hg⁺, Cd²⁺, Cu²⁺, Ni²⁺ or Ca²⁺.

Materials and methods

Experimental organism and growth conditions. Nostoc calcicola Bréb. was axenically grown in liquid growth medium (Allen and Arnon 1955) free from any combined nitrogen sources. The cultures were routinely maintained in 200 ml medium, contained in 500-ml conical flasks and illuminated with cool fluorescent light (50 μ mol photon·m⁻²·s⁻¹) in a culture room at $24\pm1^{\circ}$ C with an 18-h/6-h light/dark regime. Protein was quantified by the method of Lowry et al. (1951), modified by Herbert et al. (1971), using lysozyme (Sigma, USA) as standard.

Electrolyte leakage. Exponentially growing N. calcicola cells were harvested by centrifugation and, after washing three times with sterile distilled water, inoculated into fresh sterile liquid medium (500 μg protein/ml culture), containing graded concentrations of $\rm Hg^{2^+}$ (0.5–20.0 μM as $\rm HgCl_2$; BDH, UK). Such sets were phototrophically incubated for 16 h and the samples (25.0 ml), withdrawn at 2-h intervals, were centrifuged and the pellets resuspended in sterile distilled water for 30 min to ensure the leakage of electrolytes. Such solutions were further centrifuged and the ion content of the resultant cell-free supernatant was monitored by recording the specific conductance in a conductivity meter (sensitivity range 0.02–200 mS/mg protein; Systronics, India). The values, expressed as μS/mg protein, were obtained after deducting the background specific conductance of sterile distilled water

Nitrate uptake. The N2-grown log-phase N. calcicola cells were inoculated in a sterile basal medium (500 µg protein/ml culture), containing graded concentrations of NO₃ (1.0-25.0 mM; BDH, UK), to obtain the saturating NO₃ concentrations for optimum uptake. To assess the 50% inhibitory Hg²⁺ concentration, the cyanobacterial cells were exposed to graded concentrations of Hg2+ $(1.25-20.0 \,\mu\text{M})$ at saturating NO₃ concentration (20.0 mM) in the basal medium. This inhibitory Hg^{2+} concentration (2.5 μ M) was used in subsequent experiments on metal interactions, involving equimolar concentrations (2.5 µM each) of either CH₃Hg⁺ (as CH₃HgCl; Wilson Lab., India), Cd²⁺, Cu²⁺, Ni²⁺ or Ca²⁺ (as CdCl2, CuCl2, NiCl2 or CaCl2, respectively; BDH, UK) and graded NO₃ concentrations (1.25-20.0 mM). After treatments, the sets were incubated phototrophically for 6 h and the amount of NO₃ taken up by the cyanobacterial cells was determined by estimating the disappearance of NO₃ from the external medium. The aliquots were withdrawn at regular 1-h intervals and NO₃ in the supernatant fluid analyzed using the Brucine/H₂SO₄ method (Nicholas and Nason 1957).

Nitrate reductase activity. The in vivo NR activity in Hg²⁺-treated (2.5-20.0 mM) N. calcicola cells was monitored under identical experimental conditions to NO₃⁻ uptake (see above) by estimating the amount of NO₂⁻ produced in the NO₃⁻-supplemented (20.0 mM) basal medium. Metal-interaction experiments were also performed in the same way as for NO₃⁻ uptake, except that 12.5 µM concentration (the 50% inhibitory Hg²⁺ level) of each interacting cation was used as separate bimetallic combinations with Hg²⁺. The samples (5.0 ml), withdrawn at regular 30-min intervals, were permeabilized with 0.5 ml toluene (Merck, India), followed by rigorous shaking and incubation at 4° C for 10 min. Such samples were centrifuged to remove the toluene layer and the cell extract subjected to colorimetric estimations by using the azo-coupling method of Snell and Snell (1949).

Results

Electrolyte leakage under Hg²⁺ stress

The two-way analysis of variance (ANOVA) of the data represented in Table 1 shows that the leakage of elec-

Table 1. Leakage of electrolytes from *Nostoc calcicola* cells exposed to Hg²⁺

Hg^{2+} (μM)	Leakage (μS/mg protein) after incubation for				
	2 h	4 h	8 h	12 h	16 h
(control)	4	7	10	13	18
0.5	16	26	36	44	52
1.25	20	44	82	102	121
2.5	30	64	118	156	182
5.0	52	90	142	182	208
10.0	64	105	172	208	216
15.0	66	108	178	210	218
20.0	72	118	182	214	222

The data for electrolyte leakage (Table 1) and in vivo NR activity in relation various metal treatments (Fig. 4) and exposure time, were verified by analysis of variance (ANOVA) to test their significance at a particular probability level, and the variance ratio (F) calculated by the equation F=(treatment mean square)/(residual mean square). The value for incubations was $F_{4,28} = 28.864$, P < 0.005; for Hg $^+$ concentrations $F_{7,28} = 26.480$, P < 0.005

trolytes from Hg²⁺-treated *N. calcicola* cells varied significantly (P < 0.005) with respect to increasing metal concentrations and exposure time. Apart from cell death at Hg²⁺ concentrations exceeding 10.0 μ M, the leakage of electrolytes was also found operative for the untreated cyanobacterial cells at a much slower pace (0.75 μ S·mg protein⁻¹·h⁻¹). A progressive increase in the extent of electrolyte leakage was observed for cells treated with 0.5–5.0 μ M Hg²⁺. However, on exposure of more than 16 h to 10.0 μ M Hg²⁺ showed maximum rate of electrolyte efflux (i.e. 16.75 μ S·protein⁻¹·h⁻¹, as determined between 4–8-h exposures). Even higher Hg²⁺ concentrations (10.0–20.0 μ M) neither stimulated the rate of electrolyte leakage nor caused a proportional increase in the specific conductance; instead, severe cell lysis was observed microscopically.

NO_3^- uptake and reduction in untreated cultures

Compared to reduction of NO_3^- at cell interior (16.0 nmol NO_2^- µg protein $^{-1} \cdot h^{-1}$), its uptake from external medium proceeded > 60 times faster (1.0 µmol NO_3^- µg protein $^{-1} \cdot h^{-1}$) with linearity over 6 h (Fig. 1a). The respective rates have been calculated from the linear portion of the curves (i.e. between 2-4 h of incubation). A distinct lag of 1 h was observed for the in vivo NR activity in untreated cyanobacterial cells. Statistical analyses of the data established a significant correlation (r = 0.988, df 4, P < 0.01; $\hat{y} = 12.4x - 11.52$) between the two processes in terms of NO_3^- utilization (Fig. 1b).

 Hg^{2+} sensitivity of NO_3^- uptake and in vivo NR activity

A comparison of the slopes in Fig. 2a and the corresponding 50% inhibitory Hg^{2+} concentrations (2.5 μM

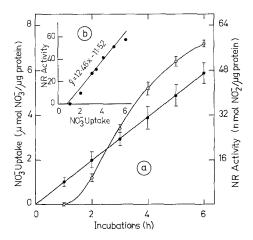


Fig. 1. Pattern of NO₃⁻ uptake and in vivo nitrate reductase activity in N. calcicola at 20.0 mM KNO₃. (a) Direct plot of NO₃⁻ uptake (\bullet) versus NR activity (O). Values are mean ± 3 SE; r = 0.988, df 4, P < 0.01. (b) Regression analysis. $x = NO_3$ ⁻ uptake and $\hat{y} = \text{in vivo nitrate reductase activity}$

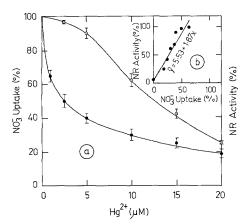
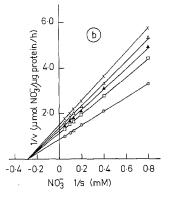



Fig. 2. A comparison of NO₃⁻ uptake and in vivo nitrate reductase activity at 20.0 mM KNO₃ in *N. calcicola* after 6-h exposure to graded Hg²⁺ concentrations. (a) Direct plot of NO₃⁻ uptake (\bullet) versus NR activity (\circ). Values are mean ± 3 SE; r = 0.916, df 4, P < 0.05. (b) Regression analysis. $x = NO_3$ ⁻ uptake and $\hat{y} = in$ vivo nitrate reductase activity

and 12.5 μ M, respectively; as determined after 6-h exposures) suggested that the heavy metal inhibited NO₃⁻ uptake more severely than its subsequent reduction at cell interior (about fivefold difference). While even low Hg²⁺ concentrations (<5.0 μ M) were most effective against the former, acute inhibition of the latter could be achieved only at more than 5.0 μ M Hg²⁺. The data in Fig. 2b further substantiate a positive, significant correlation (r=0.916, df4, P<0.05) and regression (\hat{y} =5.53+1.67x) between these metabolic events in terms of Hg²⁺ inhibition.

Interaction of CH_3Hg^+ , Cd^{2+} , Cu^{2+} , Ni^{2+} or Ca^{2+} with Hg^{2+}

NO₃ uptake kinetics. NO₃ uptake at graded KNO₃ concentrations (1.25-20.0 mM), followed Michaelis-

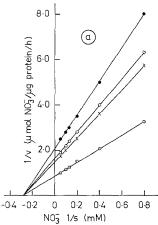


Fig. 3. Lineweaver-Burk plots for NO_3^- uptake in N. calcicola. (a) At graded KNO₃ concentrations and 2.5 μ M Hg (50% inhibitory concentration) with other metal cations (equimolar); metal-less control $(\bigcirc -\bigcirc)$, Hg²⁺ alone $(\times -\times)$, Hg²⁺ +Cd²⁺ $(\bigcirc -\bigcirc)$ and Hg²⁺ +CH₃Hg $(\bullet -\bullet)$. (b) Showing interaction of Hg²⁺ (2.5 μ M) with other metal cations (equimolar): metal-less control $(\bigcirc -\bigcirc)$, Hg²⁺ alone $(\times -\times)$, Hg²⁺ +Ni²⁺ $(\triangle -\triangle)$, Hg²⁺ +Cu²⁺

 $(\blacktriangle - \blacktriangle)$ and $Hg^{2+} + Ca^{2+}$

 $(\Box - \Box)$

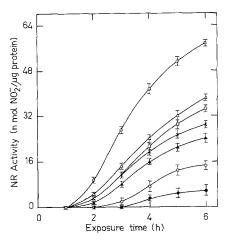


Fig. 4. In vivo nitrate reductase activity in *N. calcicola* at 20.0 mM KNO₃ showing interaction of Hg²⁺ (50% inhibitory concentration, 12.5 μ M) with other metal cations (equimolar): metal-less control ($\odot - \odot$), Hg²⁺ alone ($\times - \times$), Hg²⁺ +Cd²⁺ ($\odot - \odot$), Hg²⁺ +CH₃Hg ($\bullet - \bullet$), Hg²⁺ +Ni²⁺ ($\Delta - \Delta$), Hg²⁺ +Cu²⁺ ($\bullet - \bullet$) and Hg²⁺ +Ca²⁺ ($\circ - \odot$); values are mean ± 3 SE; $F_{\text{hours 4.24}} = 19.267$ and $F_{\text{metal combinations 6.24}} = 20.437$, $F_{\bullet} < 0.005$

Menten kinetics with K_m and $V_{\rm max}$ values of 3.57 mM and 1.18 µmol ${\rm NO_3^-} \cdot {\rm µg}$ protein $^{-1} \cdot {\rm h}^{-1}$, respectively (Fig. 3a, b). The simultaneous addition of 2.5 µM Hg²⁺ (the 50% inhibitory level) did not alter the K_m ; nevertheless, $V_{\rm max}$ was reduced to 0.67 µmol ${\rm NO_3^-} \cdot {\rm µg}$ protein $^{-1} \cdot {\rm h}^{-1}$). The bimetallic combinations of Hg²⁺ with either Cd²⁺ or CH₃Hg⁺, further reduced the $V_{\rm max}$

to 0.61 and 0.49 μ mol NO $_3^-\cdot\mu$ g protein $^{-1}\cdot h^{-1}$, respectively (Fig. 3a). However, Hg²⁺ in combination with either Ni²⁺, Cu²⁺ or Ca²⁺ enhanced the corresponding V_{max} values (0.74, 0.80 and 0.91 μ mol NO $_3^-\cdot\mu$ g protein $_3^{-1}\cdot h^{-1}$) over the cyanobacterial cells exposed to Hg²⁺ alone (Fig. 3b).

In vivo nitrate reductase activity. Interaction experiments on similar lines showed that the reduction of NO_3^- was reduced to half (8.0 nmol $NO_2^- \cdot \mu g$ protein $^{-1} \cdot h^{-1}$) in presence of 12.5 μ M Hg²⁺, but the simultaneous addition of equimolar concentrations (12.5 μ M each) of either Ca^{2+} or Ni^{2+} with Hg²⁺, resulted in the recovery of enzyme activity (9.2 and 9.6 nmol $NO_2^- \cdot \mu g$ protein $^{-1} \cdot h^{-1}$ respectively; Fig. 4). In contrast, Hg²⁺ in combination with either Cu^{2+} , Cd^{2+} or CH_3Hg^+ reduced the in vivo activity rates of nitrate reductase to 7.2, 3.2 and 1.6 nmol $NO_2^- \cdot \mu g$ protein $^{-1} \cdot h^{-1}$, respectively. Such variations in the NR activity rates in response to different Hg^{2+} combinations and exposure time were found to be statistically significant at less than 0.5% probability level.

Discussion

The negligible efflux of electrolytes from untreated N. calcicola cells (0.75 μ S·mg protein⁻¹·h⁻¹; Table 1) suggests that the cyanobacterial cell membrane actively regulates the transmembrane movement of electrolytes. The proportional increase in electrolyte leakage corresponding to the exposure to less than 5.0 µM Hg²⁺ suggests it arises as a consequence of the irreversible binding of Hg²⁺ with the adsorption sites on the cell surface, as reported for Anabaena inaequalis (Stratton et al. 1979). While the irregular enhancement in the electrolyte loss at higher Hg²⁺ concentrations (5.0-20.0 µM) may be attributed to the disruption of the cell membrane, as reported for ion loss in other cyanobacteria induced by Cu, Cd, Cr or Pb (Mierle and Stokes 1976; Singh and Yadava 1986; Rai and Raizada 1987, 1988). A corollary of these findings is that the cell membrane represents the primary site of Hg^{2+} action in N. calcicola and even very low Hg2+ concentrations may disrupt its integrity, leading to the uncontrolled leakage of intracellular electrolytes. The cell lysis at Hg²⁺ concentrations exceeding 10.0 µM possibly represents the ultimate fate of the cell membrane. Thus, it is suggested that the electrolyte leakage may be taken as a reliable criterion to assess cell membrane integrity in cyanobac-

In comparison to NO₃⁻ uptake, the NR activity not only showed a lag of 1 h but also a slow activity rate in untreated *N. calcicola* cells (about 60-fold difference; Fig. 1). Such data are in conformity with those of other cyanobacteria in that NO₃⁻ enters the cell via a transport system and the anion itself acts as the inducer of nitrate reductase (Flores et al. 1983). The overall comparison of the inhibition events in general, and in particular of the corresponding 50% inhibitory Hg²⁺ concentrations for NO₃⁻ uptake (2.5 µM) and NR activity

(12.5 μM), suggests a five-fold enhanced Hg²⁺ sensitivity of the former (Fig. 2). The severe inhibition of enzyme activity exclusively at more than 5.0 µM Hg²⁺, and NO₃ uptake at less than that, suggests that suboptimal availability of NO₃ is needed to induce the nitrate reductase in the cell interior. The unaltered K_m compared to V_{max} indicates a condition of non-competitive interaction between NO₃ and Hg²⁺ and rules out the possibility of a common site of entry for both ions or a competitive interaction (Fig. 3). However, such observations are in contrast to that of competitive Cd²⁺ inhibition of NO₃ uptake in a non-N₂-fixing cyanobacterium (Singh and Yadava 1983), suggesting that the nature of NO₃ - heavy-metal interaction may differ, not only from metal to metal, but also from organism to organism.

The apparent reduction of V_{max} for NO_3^- uptake (Fig. 3a) and NR activity rate (Fig. 4) with $Hg^{2+} + CH_3Hg^+$ combinations over that of Hg^{2+} . treated N. calcicola cells, suggests that the inorganic and organic mercury species interact synergistically with each other. The comparatively lesser extent of reduction in V_{max} and activity rate with $Hg^{2+} + Cd^{2+}$ combinations, suggests a lesser degree of synergism between these cations. Such synergistic interactions suggest that Hg²⁺ either becomes co-adsorbed on the common cell surface with CH₃Hg⁺ and Cd²⁺ or it facilitates the influx of such toxic cations, which result in the enhancement of inhibitory actions of Hg²⁺, as reported in terms of photosynthetic O₂ evolution and ¹⁴CO₂ incorporation in N. calcicola (Singh and Singh 1987). On the other hand, the enhancement of $V_{\rm max}$ and enzyme activity rates with ${\rm Hg^{2}}^+ + {\rm Ca^{2+}}$ or ${\rm Ni^{2}}^+$ combinations over that of sets containing only Hg2+, indicates antagonism between such cation combination (Figs. 3b, 4). The reduced degree of antagonism for $Hg^{2+} + Ni^{2+}$ combinations over that of Hg2++Ca2+ may result either from direct competition for common uptake/ binding site(s), or saturation of such site(s) preferentially by Ni²⁺ in the presence of Hg²⁺, as reported for Anabaena inaequalis (Stratton and Corke 1979). Cu²⁺ ions showed a dual nature of interaction with Hg2+ depending on the parameters, i.e. antagonism for NO₃ uptake and synergism for NR activity, which may be the result of its dual bonding preference for cellular ligands (Jones 1984).

Acknowledgements. We are grateful to Dr. S. Singh for helpful discussions and to the Head, Department of Botany and the Programme Coordinator, Centre of Advanced Study in Botany, for basic laboratory facilities. CBS gratefully acknowledges the Council of Scientific and Industrial Research (Government of India) for financial support in the form of a Research Associateship.

References

Allen MB, Arnon DI (1955) Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm. Plant Physiol 30:366-372

Blinn DW, Tompkins T, Zaleski L (1977) Mercury inhibition on primary productivity using large volume plastic chambers in situ. J Phycol 13:58-61

- Flores E, Guerrero MG, Losada M (1983) Photosynthetic nature of nitrate uptake and reduction in the cyanobacterium *Anacystic nidulans*. Biochim Biophys Acta 722:408-416
- Guerrero MG, Lara C (1987) Assimilation of inorganic nitrogen. In Fay P, Van Baalen C (eds) The Cyanobacteria, Elsevier Science Publishers, pp 163-181
- Henriksen A, Wright RF (1978) Concentrations of heavy metals in small Norwegian lakes. Water Res 12:101-112
- Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In Norris JR, Ribbons DW (eds) Methods in microbiology, vol VB, Academic Press, London, pp 209-344
- Jeffries TW (1982) The microbiology of mercury. Progr Indust Microbiol 76:21-75
- Jones MM (1984) Antagonists for toxic heavy metals. Proc West Pharmacol Soc 27:163-167
- Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193:265-275
- Mierle G, Stokes PM (1976) Heavy metal tolerance and metal accumulation by planktonic algae. In: Hemphill DD (ed) Trace substances in environmental health, vol XI, University Missouri, Columbia, pp 113-122
- Nicholas DJ, Nason A (1957) Determination of nitrate and nitrite. Methods Enzymol 3:981-984
- Rai LC, Dubey SK (1989) Impact of chromium and tin on nitrogen-fixing cyanobacterium Anabaena diliolum: interaction with bivalent cations. Exotoxicol Environ Safety 17:94-104
- Rai LC, Raizada M (1987) Toxicity of nickel and silver to Nostoc muscorum: interaction with ascorbic acid, glutathione and sulfur-containing amino acids. Exotoxicol Environ Safety 14:12– 21
- Rai LC, Raizada M (1988) Impact of chromium and lead on Nostoc muscorum: regulation of toxicity by ascorbic acid, glutathione and sulfur-containing amino acids. Exotoxicol Environ Safety 15:195-205
- Rai LC, Gaur JP, Kumar HD (1981) Phycology and heavy metal pollution. Biol Rev 56:99-151

- Shieh YJ, Barber J (1973) Uptake of mercury by *Chlorella* and its effect on potassium regulation. Planta 109:49-60
- Sigmon CF, Kania HJ, Beyers RJ (1977) Reduction in biomass and diversity resulting from exposure to mercury in artificial streams. J Fish Res Bd Can 34:493-500
- Singh CB, Singh SP (1987) Effect of mercury on photosynthesis in Nostoc calcicola: role of ATP and interaction heavy metal ions. J Plant Physiol 129:49-58
- Singh SP, Yadava V (1983) Cadmium-induced inhibition of nitrate uptake in *Anacystis nidulans*: interaction with other divalent cations. J Gen Appl Microbiol 29:297-304
- Singh SP, Yadava V (1986) Cadmium tolerance in the cyanobacterium *Anacystis nidulans*. Biol Zentralbl 105:539-542
- Singh CB, Verma SK, Singh SP (1987) Impact of heavy metals on glutamine synthetase and nitrogenase activity in *Nostoc calcicola*. J Gen Appl Microbiol 33:87-91
- Singh DP, Khare P, Bisen PS (1989) Effect of Ni²⁺, Hg²⁺ and Cu²⁺ on growth, oxygen evolution and photosynthetic electron transport in *Cylindrospermum* PU 942. J Plant Physiol 134:406-412
- Snell FD, Snell CT (1949) Nitrate. In: Colorimetric methods of analysis, 3rd edn, vol II. Van Nostrand, New York, pp 785– 807
- Starodub ME, Wong PTS, Mayfield CI, Chau YK (1987) Influence of complexation and pH on individual and combined heavy metal toxicity to a freshwater green alga. Can J Fish Aquat Sci 44:1173-1180
- Stratton GW, Corke CT (1979) The effect of mercuric, cadmium and nickel ion combinations on a blue-green alga. Chemosphere 10:731-740
- Stratton GW, Huber AL, Corke CT (1979) Effect of mercuric ion on the growth, photosynthesis and nitrogenase activity of *Anabaena inaequalis*. Appl Environ Microbiol 38:537-543
- Whitton BA (1970) Toxicity of heavy metals to algae: a review. Phykos 9:116-125